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Abstract. Here we study the singular anharmonic potentials by applying the analytic 
continuation method of Holubec and Stauffer. In order to do that we have developed several 
approximations to the problem, because this method cannot be applied when the solution has 
essential singularities &any point of its domain. All the options here shown have the same 
precision, giving us the eigenvalues correct to all the decimal places provided by the computer. 

1. Introduction 

There are a number of cases where the use of singular potentials is of interest physically 
and mathematically 11-41. It is known the difficulty in obtaining accurate solutions and 
eigenvalues to the Schrodinger equation when the potential has singularities stronger than 
r-z. Some of these potentials appear in quantum physics and are the so called anharmonic 
singular potentials [2-71 which, in general can be written as 

where r E [0, CO), the parameters a. are positive real numbers and, at least one 'of them is 
greater than 2. Also;much attention has beenpaid to the perturbative solution of the spiked 
harmonic potential [8,9] defined as 

(2) 

where a is a positive real number. If a > 2 the eigenfunctions must take the value zero at 
the origin and then we can look this problem as a particular case of (1) in the s-wave. 

Different methods have been used in order to solve the anharmonic singular potential, 
such as numerical integration of the differential equation I6,9], perturbative schemes 
specially developed for this type of potential [I, 2,4,10], and variational methods [7,9,1 I]. 
The perturbative approximation has been studied pahcularly extensively because of the 
difficulty in applying it. The reason lies in that no one terms in the potential dominates 
over the others: the rz  term is more important for large values of r and the terms 
are much larger near the origin. So, only when the parameters b, are quite small is the 
convergence of the series expansion acceptable. Also, perturbative expansions have been 
performed which give good results for large values of the coupling parameter [9]. In any 
case, none of the methods used to obtain the eigenvalues allows us to obtain a precision 
greater than six or seven decimal places. 
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Neither do classical numerical integration methods work with the precision that they 
provide where the potential is less singular. This is because, as Killinbeck stated [6], 
the exact wavefunction has an essential singularity at the origin when the potential is of 
the type given by (I), and the energy of the bound states has an anomalous behaviour in 
terms of the integration step, such as occurs with the Numerov method. One can use the 
more elementary method of discretization for the second derivative, thus avoiding all these 
problems, because in this way we do not have to evaluate the potential at the origin [12]. 
In any case, it is known that to obtain the energy to six decimal places one must use a mesh 
with 80.000 points [9]. In any case, it is the essential singularity of the eigenfunction at the 
origin that prevents all these methods from working adequately. 

There is another method 1131, based on the analytic continuation of the solution of a 
differential equation, which has been shown to be very efficient in obtaining eigenvalues 
of Schrodinger operators for different potentials when these do not generate essential 
singularities on the eigenfunction 113-151. In fact this is an analytic method and allows one 
to obtain the eigenenergies correct to all the significant digits provided by the computer. 
However, when the potential is such that the corresponding eigenfunctions have essential 
singularities, one is not able to apply this method because it is not possible to use the 
analyticity of the eigenfunction in the neighbourhood of -z = 0. The aim of this work is 
to show how the method of analytic continuation can be applied in these above-mentioned 
cases. As we shall see below, the results obtained will have a precision similar to those 
where no essential singularities are present, i.e. we shall obtain a precision equal to all the 
decimal places that the computer provides. 

2. Analytic continuation and essential singularities 

We shall describe in this section the more important characteristic of the analytic continuation 
method when applied to the eigenvalues determination. A more detailed description can be 
seen in [13,14]. Our problem is to find the eigenvalues of the Schrodinger radial operator 
which we write as 

(3) z'u"(E. Z) - [I([ -k 1) + z'V(Z) - Ez~]u(E, Z) = 0 

where we have used z instead r to extend the differential equation to the complex plane, 
although we are only interested in the solution on the positive real line. We use units 
hZ/2m = 1. 

The eigenfunction u(E, z )  must d i s f y  the conditions u(E,O) = 0 and u(E,co) = 0. 
When the potential is regular or it has, at most, a pole of second order at, for example, the 
origin, the solution can be expressed as 

where f(z) is an analytical function, which can he expanded in a Maclaurin series, obtaining 

The analytic continuation method uses the analyticity property of f(z) which allows us to 
expand it around different mesh points zl, . . . , zm. . . . that lie on the positive real line as 
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It is also necessary to have an expansion for V ( z )  in the neighbourhood of each mesh point: 

and, in order to work numerically, we must truncate this series at a term N, in such a 
way that the value of the truncated series coincides with V ( z )  within the precision of the 
computer. Likewise the expansion for f(z) around any mesh point must be also truncated 
at a term Ns.  We shall take this parameter in such a way that the function will be correctly 
described between the points z,,, and zm+, and therefore the final results will not be affected 
for this choice of NS.  It is clear that the value of this parameter is a function of the distance 
between two consecutive mesh points, 6,. 

The coefficients ax(E) of (5) are determined for each E from the differential equation, 
together with the boundary condition u ( E ,  0) = 0. The Q ( E )  of (6) are also obtained from 
the differential equation and from the continuity of both the function u(E, z )  and its first 
derivative at the mesh point zm. Note that the expansion about 21 is directly connected to 
the expansion about 20. This manner of connection allows us to propagate the boundary 
condition at the origin and one obviously requires that the point zm be inside the circle of 
convergence of the expansion made about the point z m - ] .  

Finally, to obtain the eigenenergies we impose the condition that u(E,  z) goes to zero 
in the limit z + CO. This will be done in the following manner: for any value of E the 
asymptotic solution of the differential equation can be expressed in terms of two linearly 
independent asymptotic solutions u Z ( E ,  2): 

u(E, Z) '= A;(E)uT(E,  Z) + A+(E)u?(E, Z) (8) 
where u Y ( E ,  z) decreases to zero and u?(E; z )  increases to infinity when z increases, and, 
in addition, these functions are known. The coefficients A*(E) are determined by imposing 
continuity on both the function and its first derivative at'a point R, far away.the origin. The 
solution for r 2 R, is given by (8) and for r < R, the solution is that obtained by means 
of analytic continuation. The bound states correspond.to the cases for which the coefficient 
A+(E)  is zero. 

Let us comment here that it is possible to obtain the eigenvalues by imposing the 
condition u(E, R,) = 0. The precision obtained for the eigenvalues by using this condition, 
and for potentials of different type, is the same as that obtained by imposing the more 
correct condition that the coefficient A + ( E )  must equal zero [15]. This same has been 
checked in this work, when the potentials are highly singular. However, the wavefunction 
obtained in this way does not have a correct asymptotic behaviour. 

When the potential in the radial Schrodinger equation has singularities stronger than F2 
the method of analytic continuation cannot be applied directly, because the solution u ( E ,  I )  
has an essential singularity at the origin. So, the first thing to do is to avoid it altogether 
or to minimize in an adequate manner the effects that this singularity has on the solutions. 
Several options are presented in this work, all leading to results with the same precision as 
those obtained where the potential is less singular [13-151. 

The first option, upon which we will focus our attention, consists of approximating the 
required potential by 

Here R, is a new parameter that we shall take in such a way that we obtain stability in 
the eigenvalues. For small values of R, we have V ( r )  2 V&, Rc), and this potential does 
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not have singuladies. Thus we can apply the analytic continuation method directly and 
the eigenvalues obtained by solving the radial Schrodinger equation with this new potential 
V&, RJ will be lower bounds on the exact eigenvalues associated with the potential V ( r ) .  
In addition, the new potential satisfies V&, R,) < V&, R;) if R, >, R:. So by decreasing 
the parameter Re we increase the corresponding eigenvalues, thus approaching the exact 
ones. This is the easier way of avoiding the essential singularity of the exact wavefunction. 
It is clear that we need to use quite small values of R, and work near the point where the 
eigenfunction has the singularity. This~is the more delicate point because it is necessary to 
do analytic continuations when r c R, with a very small step, say 6, = RJ10. Once we 
reach the point R,, we can progressively increase the step 6, by multiplying it by a factor 
A until we reach the maximum value of the step, 8,. We must be careful at the point Rc, 
where the potential V'(r, Rc) has discontinuous derivatives. Therefore the point Re must be 
a mesh point, keeping in mind that we are performing the analytic continuation from th6 
origin to larger values of r .  

The second option consists of approximating the required potential by 

For this potential the initial condition at the origin must be changed by the condition 
u ( E ,  z = Rc) = 0 and we must take R, as the first mesh point. Note that V ( r )  < Vl(r ,  R,) 
for any R, and that  VI(^, Re) >,  VI(^, R;) if R, 2 RL. So by applying the analytic 
continuation method to the potential VI (r ,  R,) with the aforementioned initial condition 
we shall obtain a set of upper bounds on the exact eigenvalues. These upper bounds will 
approximate to the exact values as the parameter R, becomes smaller. 

Finally, the third option can be applied when we know the behaviour of the wavefunction 
near the origin analytically. This is the case of the potentials given by (1) for which the 
solution for small values of r is 

where the parameters b and depends on the smaller exponent and the corresponding 
coefficient of the potential in (I) .  Thus we know the value of the wavefunction and of 
its derivatives at a point Rc > 0 and then from this we can start the process of analytic 
continuation. This requires that the analytical expression for the eigenfunction is numerically 
acceptable at the point R,. 

We shall see below that all these methods give us the same results for the corresponding 
eigenvalues when the parameter R, is,,sufficiently small. These methods include a set of 
parameters that we shall now enumerate. They must be fixed by requiring stability in the 
results obtained and they are as follows: 

R, is the value which defines the new potentials V, and V I .  When R, becomes smaller 
we must obtain better values for the eigenvalues. 
R, is the point where we connect the function obtained by mean of the analytic 
continuation and the asymptotic one. 
6, is the initial step, around the point R,. 
6, is the final step. We go from 8, to 6, by multiplying by a factor A, that is another 
parameter. 
N, and Ns give us the number of terms that we take in the expansion of V ( z )  and f(z), 
respectively. They must be sufficiently large in order that the results do not depend on 
them. 
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3. Results 

To~analyse the precision of the methods proposed here, we compare our results with some 
special case for which~both the eigenvalue and the eigenfunction are known analytically. 
This is the case for the potential given by 

a b  
V ( r )  = r2 + - + - 

r4 r6 

with a = b = 1, which has been studied by Znojil [2] and Guardiola and Ros [7] and which 
has a ground-state energy E = 5 .  This exact value can be obtained with different sets of 
values for the free parameters. A typical set is 

Nv = 15 Ns = 15 8, = 0.01 8, = 0.2 

A = 1.05 R, = 0.125 R, = 8 
(13) 

and we can obtain the eigenvalue E = 5 working with any of the options presented here. 

Table 1. Values of the ground-state energies for'lhe singular anharmonic potential with 
bd = bs = I in terms of the.parameter R,. The E;.  i = 1.2.3 axe the values obtained 
with each of the three options. Note how the values El and E2 are respectively lower and upper 
bounds an the exact energy ( E  = 5 ) .  Here 6, = 0.01 and A = 1.05. 

0.25 5.000 002 446 703 359~ 
0.23 5.000 000 205 720 335 
0.21 5.000 OW 008 368 OW 
0.19 5.000 OW 000 119 759 
0.17 4.999 999 999 999-996 5.000 000 000 000 361 
0.15 4.999 999 999 999 998 5.000 000 000 000'000 
0.13 4.999 999 999 999 999 , . 5.000 000 000 000 000. 

4.999 999 993 551 034 
4.999 999 999 722 652 
4.999 999 999 995 094 
4.999 999 999 999 995 

5.000 000 274 214 582 
5.000 000 023 933 230 
5.000 000 001 007 228 
5.000D00 000 014 873 
5.000 000 000 000 043 
5.0W'OOO 000 000 000 
5.000 000 000 000 000 

The parameter R, defines the family of potentials that we have used. In table 1 we 
analyse the behaviour of the different options here proposed in terms of R,, once the other 
parameters have been fixed. We denote the eigenvalues obtained with the different options 
by the symbols Ei, i = 1,2,3. One can notice how the lower, El, and upper, Ez. bounds 
on the exact eigenvalue approach it when the parameter R, decreases. When this parameter 
is small enough the numerical results coincide with the analytical one within the precision 
of the computer. As can also be seen the same occurs with the third method. 

Once we have established that all the options give us the results with all the digits 
correct, in the next tables we shall write the eigenvalues obtained with the first option. In 
table 2 we show the value of the energy for the ground state of the potential given by (1) 
and for several cases studied in the literature by using different approximation methods. 
The upper part of this table shows the eigenvalues corresponding to the case b6 = 0 and 
different values of the barameter b4. The lower part shows the eigenenergies corresponding 
to different values of the parameter b6 and b4 = 0. All these cases lack analytical solutions 
and we compare the results obtained here with those considered as exact of Fem6ndez 1111 
and of Solano Torres et a1 [16]. 

A similar study has been performed in table 3 for the eigenvalues of the spiked potential 
given by (2) when [Y = 3 and for several values of the parameter 1. We compare these 
results with those labelled as exact in [9]. ~~ 
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Table 2. Values of the ground-state energies for the singular anharmonic polential compared 
with others obtained by numerical integration of the Schrddinger equation. "he upper pan 
corresponds to the case b' = 0 and different values of 4 and the lower to the case b4 = 0 and 
different values of ba. 

0.001 3.068 763 170 918 247 NA 
0.01 3.205 067 495 068 930 3.205 067 49b 
0.1 3.575 551 991 226 094 3575 55 
1 4.494 177 983 369 188 4.494 18 
10 6.606 622 512 024 944 6.606 62 

100 11.265 080 431 752 83 11.265 08 
IWO 21.369 462 532 163 43 RA 

b6 En Eb or c 

0.001 3.279 855 825 921 856 NA 
0.0025 3.353 919 317 108 725 3.353 919 30 

4,659 940 , ,, 

0.01 
1 
IO 6.003 209 028 895 745 6.003 209 

3.505 452 275 995 097 3.505 452 39 
, , ,,.,.. ,. , , , ,  , , , ,. , , ,  , 

4.659 939 969 573 538 

* Present work. 

E [161. 
NA denotes not available. 

b [111. 

Table 3. Values of the ground-state energies for the spiked potential for U = 4 and for various 
values of A compared with those of Aguilen-Navm et a1 [91. 

. . . . . . . . . . . . . . . . . . . . . . .  , . , . , . . ,  , . . I  

A E L  Eb 

0.OOl 3.004 01 1 251 013 044 3.004 OW 
0.005 3.019 140 107 276 879 3.019 142 
0.1 3.266 873 026 I13 018 3.266 873 
I 4.317 311 689 247 366 4.317 311 
10 7.735 111 103 489 141 7.735 111 

IOW 44.955 484 788 095 62 44.955 485' 

a Present work. 
191. 

In all cases the analytical continuation method works to maximum precision, 
independently of the values of the potential parameters. This clearly shows that we may 
use this method for any kind of singularity in the potential andor wavefunction. Note that 
we have improved significantly the best previous results for all the potentials. 

Finally in table 4 we illustrate the applicability of the method to the problem of obtaining 
the energies of different excited states. In particular the energies of the four first excited 
states in l-wave of (i) the anharmonic singular potential with b4 = 1 and bg = 0.8 (upper 
part of the table), and of (ii) the spiked potential with (Y = and A = 0.01 (lower part) 
are shown. The precision obtained is the same that for the ground states, working with the 
same set of free parameters. 
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Table 4. Eigenenergies of different excited states. In particular the energies of the four first 
excited states in [-wave of the anharmonic singular potential (upper pJr[ of the t&le), and of 
the spiked potential (lower part). See the text for details. 

1 E") E@)  E(?)  E(4) 

0 4.934 719 654 208 102 9.449 469 323 017 711 13.820 014 025 153 72 18.118 296 927 675 69 
I 5.826516 364 862 367 10.189 739 413 922 72 14.477 689 594 185 IO. 18.721 286 I31 MI 72 
2 15.703 099.694 993~76 . 19.863 901 016 045 I8 
3 9.152 115 M)4 044 834 13.237 870 853 570 27 17.325 653 157 929 63 21.413 724~618 088 92 , 

0 3.134824476759598 7.186617411 387038 11.222786 115.50259 l5 .k l451  03767674 
I 17.021 341 728 433 79 
2 19.005 639 422 514 53 
3 9.001~382 138 376 020 13.001 784 880 371 65, 17.002 162 317 727 45 21.CQ2 520 522 262 53 

7.337 966 318 320 429 11.528 662 793 952 46 

5.009 008 428 229 980 
7.002 761 202 108 935 

9.013 577 267 716 157 13.017 629 772 211 79 
15.004 745 148 821 64 11.003 793 296 129 79 

4. Conclusions 

We have shown how the analytic continuation method, which can only be applied where the 
solution does not have essential singularities, can also be applied in this case by introducing 
a family of non-singular potentials which depend on a parameter Rc and which tend to the 
exact potential as R, tends to zero. The application of the standard method to this family of 
potentials allows us to obtain eigenvalues, which approach the exact ones as the potential 
does. 

Although we have also introduced a third analytical option (only applicable in some 
cases), the best way of studying the eigenvalue problem for any potential is by using one of 
the two first methods, because we approach to the exact result from below or from above, 
and their results can be considered as lower or upper bounds on the exact eigenvalue. 

This method is very simple to apply as a standard numerical method, its speed also being 
similar. Note that it is not necessary to work with equally spaced mesh points, although this 
is easier. In fact we needed to work with a very small step near the singularity, increasing 
it as we move away. 

Finally let us comment here that the method can be applied to potentials with more than 
one singularity, working in a similar way as we have done when the potential is singular at 
the origin. 
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